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Recently, significant side-channel vulnerabilities have been discovered utilizing the CPU cache. These vul-
nerabilities are incredibly widespread in modern processors and a significant concern to the security commu-
nity. In this report, three attacks involving the CPU cache are analyzed along with software-based prevention
methods. Unfortunately, these preventions methods come with a cost. They end up mitigating some usages
of the CPU cache that provide critical performance benefits. This report examines whether the benefits of
preventing each vulnerability is worth its cost.
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1 INTRODUCTION
In late 2017, two major vulnerabilities were discovered affecting many different types of CPUs.
They were named “Meltdown” and “Spectre”, making international news in early January[1][2].
The significance of these vulnerabilities stems from the fact that they effect an entire CPU and can
be exploited by any machine code that is executed. Meltdown and Spectre are just two examples
of a wide class of vulnerabilities called cache-based side-channel attacks. Broadly, side-channel
attacks leak information that is meant to be private through “indirect mechanisms”. Cryptographic
primitives still hold, but underlying information is leaked[4].

In this report, the details behind cache-based side-channel attacks will be analyzed. The specific
“Meltdown” and “Spectre” attacks will be examined alongside the “FLUSH+RELOAD”method used
in both attacks. After each vulnerability is laid out, prevention mechanisms are analyzed. Because
prevention often handicaps the machine’s cache, emphasis is placed on howmuch each prevention
mechanism will cost. Finally, the report concludes with a cost benefit analysis of preventing these
attacks.

2 VULNERABILITY ANALYSIS
2.1 CPU Cache
All vulnerabilities studied in this work will look at the CPU cache. So it is important to first un-
derstand what the CPU cache is and how it works in modern processors. The behavior can be

In modern processors, caches are used to avoid repeated access to memory. Implementation
details vary signficantly between processors, but they all aim to make the computer perform faster.
The basic idea is that when the same memory is frequently accessed by the CPU, the long trip to
the memory can be avoided. This means that repeated accesses will not have to touch the memory
at all. As a result, when an address of memory is available in the cache, the access operation is
significantly faster[3].

The time these operations take is an implementation detail to programmers, but a critical detail
to attackers. Timing attacks are a common way for attackers to leak information. Early work by
Kocher showed that it is possible to use this information to find secrets used in cryptographic
primitives[6]. Chip manufacturers such as Intel and AMD take some precautions to avoid these
attacks. But, the discovery of new vulnerabilities has proven that they are not enough[1].

2.2 Flush+Reload
Flush+Reload is a method for reading data that is loaded into the CPU cache. It will be used as a
final step in both theMeltdown and SPECTRE attacks. Flush+Reload requires memory to be loaded
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into the CPU cache to work. Loading memory into the CPU cache will be accomplished by both
SPECTRE and Meltdown.

As the name implies, the attack flushes memory and then waits for the memory to be reloaded.
There are three phases in the Flush+Reload method. They are,

• Phase 1. Clear the address of memory from the cache. When the victim tries to access this
line, it will have to read it directly from memory because it is now unavailable in the cache.

• Phase 2. Attacker waits for the victim to access the address of memory. The attacker will
know that the victim has access the address by how long it takes to reload the address. The
Flush+Reload paper uses 120 cycles as the differentiater between the two. If it takes less than
120 cycles to load, the memory is in the cache. Otherwise, the memory must not be in the
cache.

• Phase 3.The attacker retrieves the timing information from the probes.The attacker can then
make deductions based on how many cycles certain operations take. The entire process can
be repeated many times to get more information, both in quality and quantity.

Timing used in Flush+Reload is highly machine dependent. Different CPU architectures, imple-
mentations, and even operating systems will effect how long each load takes. Things like specu-
lative execution and other processor quirks can make these timings unreliable. The result is that
this attack is highly temperamental.

However, the Flush+Reload technique makes it very clear that it is possible, given the right
environment, an attacker can get the contents of memory that has been stored in a CPU cache.
Flush+Reload provides a baseline in getting side channel information out of the CPU cache. It is
proof that once memory leaks into the CPU cache, it is possible for an attacker to find its value.
[9]

2.3 Meltdown
Meltdown takes advantage of out-of-order execution in modern processors. To increase perfor-
mance, processors will often execute instructions out of order. A common scenario is for one
instruction to take a long time while nearby instructions are very quick. Sophisticated heuristics
in processors are in place to execute the quick instructions in the background as the longer instruc-
tions “stall”. Programmers benefit from these optimizations without having to understand what
the processor is doing.The processor produces identical results to an in-order execution. Attackers,
however, are able to take advantage of this behavior to break memory isolation.

From Meltdown’s paper, the “core” of the Meltdown vulnerability is included,
; r c x = k e r n e l a dd r e s s , r bx = p r o b e a r r ay
1 . xor rax , rax
2 . r e t r y :
3 . mov al , byte [ r cx ]
4 . shl rax , 0 xc
5 . j z r e t r y
6 . mov rbx , qword [ rbx + rax ]
Meltdown consists of 3 steps:
• Step 1. A memory location known to be inaccessible is loaded into a register. This is seen in

#3 from the listing above. This will raise an exception that will halt execution. Later, we will
leak the contents of this memory location.

• Step 2. A later instruction uses the loaded register for an operation. This is seen in #4 from
the listing above. If the processor executes this instruction before #3, it will keep the access
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to rcx within the CPU cache. After the exception is called, the secret memory will remain
there.

• Step 3. Use FLUSH+RELOAD to get the contents of the secret memory that have leaked into
the CPU cache.

The specifics get more complicated, from here. The authors of Meltdown wrote the attack so
that it could maximize the chance of the memory appearing in the CPU cache. The attack relies on
speculative execution towork so it is important that the processor runs the cache access instruction
before the forbidden access instruction. This is not guaranteed so many retries may be required to
get the processor in the correct state.

Meltdown enables attackers to break the memory isolation that is the cornerstone of computer
security. An arbitrary memory access can get all kinds of secrets that can be used to break into
other parts of the computer. Every CPU with speculative execution could be vulnerable against
this attack. Prevention would require a CPU being much more careful on what it loads into the
cache. [7]

2.4 Spectre
Spectre takes advantage of speculative execution found in certain Interl, ARM, and AMD proces-
sors. Unlike Meltdown, only a subset of modern processors are vulnerable to this attack. At the
same time, the Spectre attack provides another mechanism that an attacker can use to exploit
private memory.

Speculative execution is used by processors to optimize performance. The processor predicts
ahead of time what branch is most likely to be used. It will then execute that branch before the
conditional. The processor guarantees that any side effects produced will be reverted if the con-
ditional doesn’t run as predicted. However, the values that have been cached are not reverted in
vulnerable processors. Spectre uses this vulnerability to exploit CPUs.

As a first step, the Spectre attack must trick the CPU into speculatively executing some branch.
There are two variants of this. One utilizes conditional branching. The other utilizes indirect
branches. The attacker trains the CPU by repeatedly running the branches to make the CPU spec-
ulatively execute the branch.

Spectre lays out many different variants that tweak the attack to work in different ways. They
leverage the side effects of speculatively executed code. One variant provides an attack to code
that doesn’t have any conditional branches at all. Another variant utilizes how the process uses
store-to-load in execution. Together these show that there are multiple tweaks possible on the
original Spectre attack that can give attackers plent of opportunities. [5]

3 PREVENTION AT THE SOFTWARE LEVEL
The vulnerabilities above are part of the way that the CPU executes code.They are essentially hard-
ware vulnerabilities that require changes at the hardware level to fix properly. After the attacks
were discovered, hardware manufacturers were able to rework their designs to avoid the under-
lying vulnerability of both Spectre and Meltdown. However, there are still tons of computers out
there still vulnerable to Spectre and Meltdown. Patches are needed to existing software to work
around the limitations found in the hardware. [1]

3.1 Flush+Reload
Because both Meltdown and Spectre rely on Flush+Reload, if we can prevent Flush+Reload, we
can also prevent Meltdown and Spectre. So, what methods are available to prevent Flush+Reload.
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Unfortunately, the core of the Flush+Reload attack is part of the x86 architecture. “clflush” is
the instruction used by Flush+Reload to perform the “flush”. There are legitimate uses of clflush
in adding and removing parts to the cache. For performance, programs can remove memory from
the cache that it knows it will no longer need.

At the hardware level, CPUs could forbid the “clflush” instruction from flushing memory that it
does not own. This change would make the Flush+Reload impossible. But, this won’t provide a fix
for Flush+Reload to the many vulnerable processors out in the wild.

The main way to prevent this attack at a software level is by changing how accurate timing
probes are. One method to accomplish this is by adding noise to clock times. This may work for
this immediate attack, however, other methods are possible to get the clock such as getting the
time over the network. Other methods may be available, but only one method can protect against
every variation of this attack.

The best solution in preventing Flush+Reload is to use constant time operations so that the
attacker cannot differentiate set and unset bits. This would require reworking how we use crypto-
graphic primitives. As of today, some constant time cryptographic methods are being developed
but are still under development and not widely available. In addition, the performance costs of this
constant time cryptography is very high and may never be feasible.[9]

3.2 Meltdown
Patches were released to protect against Meltdown before it was released to the public. [1] The
Linux kernel already had a patch that protected against it called KAISER. This change to the Linux
kernel provides two page tables for each processes. One is reserved for kernel mode and contains
all contents of the page table in a normal kernel. The other page table contains only the process’s
address space. The kernel’s address space is hidden completely from the process and every system
call is mapped outside of the process table. Together, KAISER eliminates the Meltdown attack as
the kernel space is no longer accessible. However, KAISER significantly hurts performance because
every system call has to go through its table mapping first. This results in about a 5% decrease in
performance. More optimizations are possible but some decrease in performance is inevitable. [? ]

Other countermeasures are possible. For instance, we could just disable out of order execution
completely. However, this would result in unacceptable performance for normal use. Another
potential countermeasure involves preventing the race condition between memory fetch and per-
mission check. This solves the core issues but also comes with a large cost. Every memory fetch
will have to wait for the permission check to be completed before it can finish. This was deemed
unacceptable for normal usage.

The solution accepted by most operating systems has been to adapt the KAISER patch found
in the Linux kernel to their own use cases. Apple and Microsoft have modified their kernels to
separate address spaces for the process and the kernel. Again, this results in about a 5% decrease
in performance. Other mitigations may be possible, but research is still ongoing. [7]

3.3 Spectre
The Spectre attack could be prevented by completely avoiding speculative execution. Because this
is the core of the attack, disabling it makes the attack impossible. Again, however, this would cost
significant performance as speculative execution is critical source of improved performance. In
addition, no processors provide a way to disable speculative execution entirely at the software
level, so this solution is currently not feasable.

Another approach to this mitigation would be to produce code that blocks at speculative execu-
tion. Using certain instructions, the processor can be told to block speculation at certain branches.
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Compilers can produce code that uses these instructions everywhere so as to avoid the Spectre
vulnerability. Again, this would come with a not insignificant cost.

In browsers, Spectre can be partially prevented using different processes for each tab.Thismeans
that an attackerwould only be able to seewhat is in their own tab - not others that are open. Process
isolation separates the page tables from each other, but like all other mitigations, comes with a cost.
However, that cost is not huge and this method is already used in the Google Chrome browser. In
addition, this only mitigates Spectre partially while still allowing complete access to the page table.
[5]

Because there are many variants of Spectre, no one solution will be available. Each variant will
require different fixes. [8] Altogether Spectre provides a significant attack surface for any processor
that utilizes speculative execution. [5]

4 COST BENEFIT ANALYSIS
It has been shown above that cache-based side-channel attacks can break process isolation. An
attack can read arbitrary parts of the host computer’s memory. However, for the attack to happen,
the attacker must already be able to execute code on the victim’s machine. Computers are only
vulnerable if they run untrusted code. So the question follows, how often is untrusted code run on
different computers?

Computers are used for many different applications. Certain scenarios requrie a processor to
execute lots of untrusted code. These include things like cloud computing infrastructure and other
things utilizing virtual machines. These computers are almost certainly going to require both the
KAISER patches as well as better handling of speculative execution. On the other hand, many
personal computers do not utilize as many of these features. Most code run on a personal computer
is trusted and there is little need to worry about leaking. On the other hand, many web browsers
end up executing lots of untrusted code in the form of JavaScript. Historically, JavaScript has been a
huge attack vector and it appears to be the case in Spectre andMeltdown aswell. It seems inevitable
that more intensive fixes will be needed for web browsers and cloud container infrastructure that
need not go into general Linux kernel usage. [8]

In addition, the software preventions to these attacks are quite costly. They change critical per-
formance optimisations in ways that can prevent these attacks. How much do these preventions
effect different computers?

In their review of the impact of Spectre and Meltdown, Prout et. al find a 15% slow down in
kernel performance after all available patches for Spectre and Meltdown. This study used machine
intensive computations to measure performance, but it is likely this would be felt even by average
computer users. Altogether this is a fairly large cost that could hurt normal computer usage. In ad-
dition, older hardware that is already slower than average will likely be slowed to an unacceptable
level. [8]

Finally, we must compare the cost of the prevention to the potential of being attacked. Does the
cost of preventing Spectre and Meltdown at the software level outweight the benefits of a more
secure system?

This will depend highly on the use case of the computer system. For embedded systems, it is
very likely the cost to avoid Spectre and Meltdown is too high for the cost. In comparison, cloud
computing infrastructure will almost certainly require every patch available as keeping virtual
machines isolated is a crucial part of their services. Desktop and server systems may wind up
somewhere in the middle on this continuum. They will need some of the lowest cost patches for
Spectre and Meltdown while keeping some of the performance benefits of out of order execution
and speculative execution. [8]
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5 CONCLUSION
In this work, the basic mechanisms of both Spectre and Meltdown have been described. The two
share many common parts but use different behaviors of the CPU to work. As a result, each needs
to be protected against separately. The software prevention and mitigations were describes and
compared.The results give a good idea of how thesemitigations work. Finally, the cost and benefits
of preventing Spectre and Meltdown at a hardware level were examined. Questions were asked
and we tried to provide as best answers as are currently available.
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